【题目描述】
知道黑暗城堡有 N 个房间,M 条可以制造的双向通道,以及每条通道的长度。
城堡是树形的并且满足下面的条件:
设 Di为如果所有的通道都被修建,第 i 号房间与第 1 号房间的最短路径长度;
而 Si 为实际修建的树形城堡中第 i 号房间与第 1 号房间的路径长度;
要求对于所有整数 i(1≤i≤N),有 Si=Di 成立。
你想知道有多少种不同的城堡修建方案。当然,你只需要输出答案对 2^31−1 取模之后的结果就行了。
【输入】
第一行为两个由空格隔开的整数 N,M;
第二行到第 M+1 行为 3 个由空格隔开的整数 x,y,l:表示 x 号房间与 y 号房间之间的通道长度为 l。
【输出】
一个整数:不同的城堡修建方案数对 2^31−1 取模之后的结果。
【输入样例】 4 6 1 2 1 1 3 2 1 4 3 2 3 1 2 4 2 3 4 1 【输出样例】 6【提示】
样例说明
一共有 4 个房间,6 条道路,其中 1 号和 2 号,1 号和 3 号,1 号和 4 号,2 号和 3 号,2 号和 4 号,3 号和 4 号房间之间的通道长度分别为 1,2,3,1,2,1。
而不同的城堡修建方案数对 $2^{31}−1$ 取模之后的结果为 6。
数据范围:
对于全部数据,1≤N≤1000,1≤M≤N(N−1)/2,1≤l≤200。