题目描述 Farmer John's N (1 <= N <= 100,000) cows, conveniently numbered 1..N, are once again standing in a row. Cow i has height$ H_i (1 <= H_i <= 1,000,000)$.
Each cow is looking to her left toward those with higher index numbers. We say that cow i 'looks up' to cow j if i < j and$ H_i < H_j$. For each cow i, FJ would like to know the index of the first cow in line looked up to by cow i.
Note: about 50% of the test data will have N <= 1,000.
约翰的$N(1\le N\le10^5)$头奶牛站成一排,奶牛i的身高是$H_i(1\le H_i\le10^6)$。 现在,每只奶牛都在向右看齐。对于奶牛i,如果奶牛j满足i < j且$H_i< H_j$,我们可以说奶牛i可以仰望奶牛j。 求出每只奶牛离她最近的仰望对象。
Input
输入输出格式 输入格式 Line 1: A single integer: N Lines 2..N+1: Line i+1 contains the single integer: $H_i$ 第11行输入N,之后每行输入一个身高$H_i$。
输出格式 * Lines 1..N: Line i contains a single integer representing the smallest index of a cow up to which cow i looks. If no such cow exists, print 0.
共NN行,按顺序每行输出一只奶牛的最近仰望对象,如果没有仰望对象,输出0。
输入输出样例
输入样例 #1 6 3 2 6 1 1 2 输出样例 #1 3 3 0 6 6 0说明/提示 FJ has six cows of heights 3, 2, 6, 1, 1, and 2.
Cows 1 and 2 both look up to cow 3; cows 4 and 5 both look up to cow 6; and cows 3 and 6 do not look up to any cow.
【输入说明】66头奶牛的身高分别为 3,2,6,1,1,2。
【输出说明】奶牛 #1,#2 仰望奶牛 #3,奶牛 #4,#5 仰望奶牛 #6,奶牛 #3 和 #6 没有仰望对象。
【数据规模】
对于20%的数据:$1\le N\le101≤N≤10$;
对于50%的数据:$1\le N\le10^31≤N≤10^3$;
对于100%的数据:$1\le N\le10^5,1\le H_i\le10^6,1≤N≤10^5,1≤H_i≤10^6$。