题目描述
NOI2130 即将举行。为了增加观赏性,CCF 决定逐一评出每个选手的成绩,并直播即时的获奖分数线。本次竞赛的获奖率为 $w\%$,即当前排名前 $w\%$ 的选手的最低成绩就是即时的分数线。
更具体地,若当前已评出了 $p$ 个选手的成绩,则当前计划获奖人数为 $\max(1, \lfloor p \times w \%\rfloor)$,其中 $w$ 是获奖百分比,$\lfloor x \rfloor$ 表示对 $x$ 向下取整,$\max(x,y)$ 表示 $x$ 和 $y$ 中较大的数。如有选手成绩相同,则所有成绩并列的选手都能获奖,因此实际获奖人数可能比计划中多。
作为评测组的技术人员,请你帮 CCF 写一个直播程序。
输入格式
第一行有两个整数 $n, w$。分别代表选手总数与获奖率。
第二行有 $n$ 个整数,依次代表逐一评出的选手成绩。
输出格式
只有一行,包含 $n$ 个非负整数,依次代表选手成绩逐一评出后,即时的获奖分数线。相邻两个整数间用一个空格分隔。
样例 #1
样例输入 #1
10 60
200 300 400 500 600 600 0 300 200 100
样例输出 #1
200 300 400 400 400 500 400 400 300 300
样例 #2
样例输入 #2
10 30
100 100 600 100 100 100 100 100 100 100
样例输出 #2
100 100 600 600 600 600 100 100 100 100
提示
样例 1 解释
数据规模与约定
各测试点的 $n$ 如下表:
测试点编号 | $n=$ |
---|---|
$1 \sim 3$ | $10$ |
$4 \sim 6$ | $500$ |
$7 \sim 10$ | $2000$ |
$11 \sim 17$ | $10^4$ |
$18 \sim 20$ | $10^5$ |
对于所有测试点,每个选手的成绩均为不超过 $600$ 的非负整数,获奖百分比 $w$ 是一个正整数且 $1 \le w \le 99$。
提示
在计算计划获奖人数时,如用浮点类型的变量(如 C/C++ 中的 float
、 double
,Pascal 中的 real
、 double
、 extended
等)存储获奖比例 $w\%$,则计算 $5 \times 60\%$ 时的结果可能为 $3.000001$,也可能为 $2.999999$,向下取整后的结果不确定。因此,建议仅使用整型变量,以计算出准确值。